Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Transl Med ; 22(1): 292, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38504345

RESUMO

BACKGROUND: Naturally occurring colorectal cancers (CRC) in rhesus macaques share many features with their human counterparts and are useful models for cancer immunotherapy; but mechanistic data are lacking regarding the comparative molecular pathogenesis of these cancers. METHODS: We conducted state-of-the-art imaging including CT and PET, clinical assessments, and pathological review of 24 rhesus macaques with naturally occurring CRC. Additionally, we molecularly characterized these tumors utilizing immunohistochemistry (IHC), microsatellite instability assays, DNAseq, transcriptomics, and developed a DNA methylation-specific qPCR assay for MLH1, CACNA1G, CDKN2A, CRABP1, and NEUROG1, human markers for CpG island methylator phenotype (CIMP). We furthermore employed Monte-Carlo simulations to in-silico model alterations in DNA topology in transcription-factor binding site-rich promoter regions upon experimentally demonstrated DNA methylation. RESULTS: Similar cancer histology, progression patterns, and co-morbidities could be observed in rhesus as reported for human CRC patients. IHC identified loss of MLH1 and PMS2 in all cases, with functional microsatellite instability. DNA sequencing revealed the close genetic relatedness to human CRCs, including a similar mutational signature, chromosomal instability, and functionally-relevant mutations affecting KRAS (G12D), TP53 (R175H, R273*), APC, AMER1, ALK, and ARID1A. Interestingly, MLH1 mutations were rarely identified on a somatic or germline level. Transcriptomics not only corroborated the similarities of rhesus and human CRCs, but also demonstrated the significant downregulation of MLH1 but not MSH2, MSH6, or PMS2 in rhesus CRCs. Methylation-specific qPCR suggested CIMP-positivity in 9/16 rhesus CRCs, but all 16/16 exhibited significant MLH1 promoter hypermethylation. DNA hypermethylation was modelled to affect DNA topology, particularly propeller twist and roll profiles. Modelling the DNA topology of a transcription factor binding motif (TFAP2A) in the MLH1 promoter that overlapped with a methylation-specific probe, we observed significant differences in DNA topology upon experimentally shown DNA methylation. This suggests a role of transcription factor binding interference in epigenetic silencing of MLH1 in rhesus CRCs. CONCLUSIONS: These data indicate that epigenetic silencing suppresses MLH1 transcription, induces the loss of MLH1 protein, abrogates mismatch repair, and drives genomic instability in naturally occurring CRC in rhesus macaques. We consider this spontaneous, uninduced CRC in immunocompetent, treatment-naïve rhesus macaques to be a uniquely informative model for human CRC.


Assuntos
Neoplasias Encefálicas , Neoplasias Colorretais , Instabilidade de Microssatélites , Síndromes Neoplásicas Hereditárias , Humanos , Animais , Macaca mulatta/genética , Macaca mulatta/metabolismo , Proteína 1 Homóloga a MutL/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/genética , Endonuclease PMS2 de Reparo de Erro de Pareamento/metabolismo , Neoplasias Colorretais/patologia , Metilação de DNA/genética , Epigênese Genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , DNA/metabolismo , Reparo de Erro de Pareamento de DNA/genética
2.
Neuroimage ; 285: 120491, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38070839

RESUMO

Cerebrovascular reactivity (CVR) is a measure of cerebral small vessels' ability to respond to changes in metabolic demand and can be quantified using magnetic resonance imaging (MRI) coupled with a vasoactive stimulus. Reduced CVR occurs with neurodegeneration and is associated with cognitive decline. While commonly measured in humans, few studies have evaluated CVR in animal models. Herein, we describe methods to induce hypercapnia in rhesus macaques (Macaca mulatta) under gas anesthesia to measure cerebral blood flow (CBF) and CVR using pseudo-continuous arterial spin labeling (pCASL). Fifteen (13 M, 2 F) adult rhesus macaques underwent pCASL imaging that included a baseline segment (100% O2) followed by a hypercapnic challenge (isoflurane anesthesia with 5% CO2, 95% O2 mixed gas). Relative hypercapnia was defined as an end-tidal CO2 (ETCO2) ≥5 mmHg above baseline ETCO2. The mean ETCO2 during the baseline segment of the pCASL sequence was 34 mmHg (range: 23-48 mmHg). During this segment, mean whole-brain CBF was 51.48 ml/100g/min (range: 21.47-77.23 ml/100g/min). Significant increases (p<0.0001) in ETCO2 were seen upon inspiration of the mixed gas (5% CO2, 95% O2). The mean increase in ETCO2 was 8.5 mmHg and corresponded with a mean increase in CBF of 37.1% (p<0.0001). The mean CVR measured was 4.3%/mmHg. No anesthetic complications occurred as a result of the CO2 challenge. Our methods were effective at inducing a state of relative hypercapnia that corresponds with a detectable increase in whole brain CBF using pCASL MRI. Using these methods, a CO2 challenge can be performed in conjunction with pCASL imaging to evaluate CBF and CVR in rhesus macaques. The measured CVR in rhesus macaques is comparable to human CVR highlighting the translational utility of rhesus macaques in neuroscience research. These methods present a feasible means to measure CVR in comparative models of neurodegeneration and cerebrovascular dysfunction.


Assuntos
Dióxido de Carbono , Hipercapnia , Adulto , Animais , Humanos , Macaca mulatta , Hipercapnia/diagnóstico por imagem , Marcadores de Spin , Imageamento por Ressonância Magnética/métodos , Circulação Cerebrovascular/fisiologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-37972714

RESUMO

PURPOSE: Long-term survivors of brain irradiation can experience irreversible injury and cognitive impairment. T1-weighted and diffusion tensor magnetic resonance imaging (MRI) are used to evaluate brain volume and white matter (WM) microstructure in neurodevelopmental and neurodegenerative conditions. The goal of this study was to evaluate the long-term effects of single-dose total-body irradiation (TBI) or TBI with 5% partial-body sparing on brain volumetrics and WM integrity in macaques. METHODS AND MATERIALS: We used MRI scans from a cohort of male rhesus macaques (age range, 3.6-22.8 years) to compare global and regional brain volumes and WM diffusion in survivors of TBI (T1-weighted, n = 137; diffusion tensor imaging, n = 121; dose range, 3.5-10 Gy) with unirradiated controls (T1-weighted, n = 48; diffusion tensor imaging, n = 38). RESULTS: In all regions of interest, radiation affected age-related changes in fractional anisotropy, which tended to increase across age in both groups but to a lesser extent in the irradiated group (interaction P < .01). Depending on the region of interest, mean diffusivity decreased or remained the same across age in unirradiated animals, whereas it increased or did not change in irradiated animals. The increases in mean diffusivity were driven by changes in radial diffusivity, which followed similar trends across age. Axial diffusivity did not differ by irradiation status. Age-related changes in relative volumes in controls reflected normal trends in humans, with increasing WM and decreasing gray matter until middle age. Cerebrospinal fluid (CSF) volume did not differ across age in controls. WM volume was lower and CSF volume was higher in young irradiated macaques. WM volume was similar between groups, and CSF volume lower in older irradiated macaques. Gray matter volume was unaffected by radiation. CONCLUSIONS: TBI results in delayed WM expansion and long-term disruption of WM integrity. Diffusion changes suggest that myelin injury in WM is a hallmark of late-delayed radiation-induced brain injury.

4.
J Immunother Cancer ; 11(1)2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36593067

RESUMO

The complexity of cancer immunotherapy (CIT) demands reliable preclinical models to successfully translate study findings to the clinics. Non-human primates (NHPs; here referring to rhesus and cynomolgus macaques) share broad similarities with humans including physiology, genetic homology, and importantly also immune cell populations, immune regulatory mechanisms, and protein targets for CIT. Furthermore, NHP naturally develop cancers such as colorectal and breast cancer with an incidence, pathology, and age pattern comparable to humans. Thus, these tumor-bearing monkeys (TBMs) have the potential to bridge the experimental gap between early preclinical cancer models and patients with human cancer.This review presents our current knowledge of NHP immunology, the incidence and features of naturally-occurring cancers in NHP, and recent TBM trials investigating CIT to provide a scientific rationale for this unique model for human cancer.


Assuntos
Neoplasias , Animais , Humanos , Macaca mulatta , Neoplasias/terapia , Imunoterapia
5.
Radiat Oncol ; 17(1): 72, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35410422

RESUMO

OBJECTIVE: Hypersensitivity towards proton versus photon irradiation was demonstrated in homologous recombination repair (HRR)-deficient cell lines. Hence, combined treatment concepts targeting HRR provide a rational for potential pharmaceutical exploitation. The HSP90 inhibitor ganetespib (STA-9090) downregulates a multitude of HRR-associated proteins and sensitizes for certain chemotherapeutics. Thus, the radiosensitizing effect of HSP90-inhibiting ganetespib was investigated for reference photon irradiation and proton irradiation at a proximal and distal position in a spread-out Bragg peak (SOBP). METHODS: A549 and FaDu cells were treated with low-dose (2 nM resp. 1 nM) ganetespib and irradiated with 200 kV photons. Proton irradiation was performed at a proximal and a distal position within a SOBP, with corresponding dose-averaged linear-energy transfer (LETD) values of 2.1 and 4.5 keV/µm, respectively. Cellular survival data was fitted to the linear-quadratic model to calculate relative biological effectiveness (RBE) and the dose-modifying factor (DMF). Additionally, A549 cells were treated with increasing doses of ganetespib and investigated by flow cytometry, immunoblotting, and immunofluorescence microscopy to investigate cell cycle distribution, Rad51 protein levels, and γH2AX foci, respectively. RESULTS: Low-dosed ganetespib significantly sensitized both cancer cell lines exclusively for proton irradiation at both investigated LETD, resulting in increased RBE values of 10-40%. In comparison to photon irradiation, the fraction of cells in S/G2/M phase was elevated in response to proton irradiation with 10 nM ganetespib consistently reducing this population. No changes in cell cycle distribution were detected in unirradiated cells by ganetespib alone. Protein levels of Rad51 are downregulated in irradiated A549 cells by 10 nM and also 2 nM ganetespib within 24 h. Immunofluorescence staining demonstrated similar induction and removal of γH2AX foci, irrespective of irradiation type or ganetespib administration. CONCLUSION: Our findings illustrate a proton-specific sensitizing effect of low-dosed ganetespib in both employed cell lines and at both investigated SOBP positions. We provide additional experimental data on cellular response and a rational for future combinatorial approaches with proton radiotherapy.


Assuntos
Neoplasias , Prótons , Relação Dose-Resposta à Radiação , Humanos , Neoplasias/radioterapia , Eficiência Biológica Relativa , Triazóis/farmacologia
6.
Sci Rep ; 11(1): 24116, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34916568

RESUMO

Although particle therapy with protons has proven to be beneficial in the treatment of chondrosarcoma compared to photon-based (X-ray) radiation therapy, the cellular and molecular mechanisms have not yet been sufficiently investigated. Cell viability and colony forming ability were analyzed after X-ray and proton irradiation (IR). Cell cycle was analyzed using flow cytometry and corresponding regulator genes and key players of the DNA repair mechanisms were measured using next generation sequencing, protein expression and immunofluorescence staining. Changes in metabolic phenotypes were determined with nuclear magnetic resonance spectroscopy. Both X-ray and proton IR resulted in reduced cell survival and a G2/M phase arrest of the cell cycle. Especially 1 h after IR, a significant dose-dependent increase of phosphorylated γH2AX foci was observed. This was accompanied with a reprogramming in cellular metabolism. Interestingly, within 24 h the majority of clearly visible DNA damages were repaired and the metabolic phenotype restored. Involved DNA repair mechanisms are, besides the homology directed repair (HDR) and the non-homologous end-joining (NHEJ), especially the mismatch mediated repair (MMR) pathway with the key players EXO1, MSH3, and PCNA. Chondrosarcoma cells regenerates the majority of DNA damages within 24 h. These molecular mechanisms represent an important basis for an improved therapy.


Assuntos
Ciclo Celular/efeitos da radiação , Condrossarcoma/genética , Condrossarcoma/radioterapia , Reparo do DNA/efeitos da radiação , Fótons/uso terapêutico , Terapia com Prótons , Sobrevivência Celular/efeitos da radiação , Condrossarcoma/patologia , Quebras de DNA de Cadeia Dupla/efeitos da radiação , Relação Dose-Resposta à Radiação , Humanos , Dosagem Radioterapêutica , Fatores de Tempo , Células Tumorais Cultivadas
7.
Med Phys ; 47(8): 3691-3702, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32347564

RESUMO

PURPOSE: A relative biological effectiveness (RBE) of 1.1 is commonly used in clinical proton therapy, irrespective of tissue type and depth. This in vitro study was conducted to quantify the RBE of scanned protons as a function of the dose-averaged linear energy transfer (LETd ) and the sensitivity factor (α/ß)X . Additionally, three phenomenological models (McNamara, Rørvik, and Jones) and one mechanistic model (repair-misrepair-fixation, RMF) were applied to the experimentally derived data. METHODS: Four human cell lines (FaDu, HaCat, Du145, SKMel) with differential (α/ß)X ratios were irradiated in a custom-designed irradiation setup with doses between 0 and 6 Gy at proximal, central, and distal positions of a 80 mm spread-out Bragg peak (SOBP) centered at 80 mm (setup A: proton energies 66.5-135.6 MeV) and 155 mm (setup B: proton energies 127.2-185.9 MeV) depth, respectively. LETd values at the respective cell positions were derived from Monte Carlo simulations performed with the treatment planning system (TPS, RayStation). Dosimetric measurements were conducted to verify dose homogeneity and dose delivery accuracy. RBE values were derived for doses that resulted in 90 % (RBE90 ) and 10 % (RBE10 ) of cell survival, and survival after a 0.5 Gy dose (RBE0.5Gy ), 2 Gy dose (RBE2Gy ), and 6 Gy dose (RBE6Gy ). RESULTS: LETd values at sample positions were 1.9, 2.1, 2.5, 2.8, 4.1, and 4.5 keV/µm. For the cell lines with high (α/ß)X ratios (FaDu, HaCat), the LETd did not impact on the RBE. For low (α/ß)X cell lines (Du145, SKMel), LQ-derived survival curves indicated a clear correlation of LETd and RBE. RBE90 values up to 2.9 and RBE10 values between 1.4 and 1.8 were obtained. Model-derived RBE predictions slightly overestimated the RBE for the high (α/ß)X cell lines, although all models except the Jones model provided RBE values within the experimental uncertainty. For low (α/ß)X cell lines, no agreement was found between experiments and model predictions, that is, all models underestimated the measured RBE. CONCLUSIONS: The sensitivity parameter (α/ß)X was observed to be a major influencing factor for the RBE of protons and its sensitivity toward LETd changes. RBE prediction models are applicable for high (α/ß)X cell lines but do not estimate RBE values with sufficient accuracy in low (α/ß)X cell lines.


Assuntos
Terapia com Prótons , Prótons , Linhagem Celular , Humanos , Transferência Linear de Energia , Eficiência Biológica Relativa
8.
Cells ; 9(4)2020 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-32260562

RESUMO

Technical improvements in clinical radiotherapy for maximizing cytotoxicity to the tumor while limiting negative impact on co-irradiated healthy tissues include the increasing use of particle therapy (e.g., proton therapy) worldwide. Yet potential differences in the biology of DNA damage induction and repair between irradiation with X-ray photons and protons remain elusive. We compared the differences in DNA double strand break (DSB) repair and survival of cells compromised in non-homologous end joining (NHEJ), homologous recombination repair (HRR) or both, after irradiation with an equal dose of X-ray photons, entrance plateau (EP) protons, and mid spread-out Bragg peak (SOBP) protons. We used super-resolution microscopy to investigate potential differences in spatial distribution of DNA damage foci upon irradiation. While DNA damage foci were equally distributed throughout the nucleus after X-ray photon irradiation, we observed more clustered DNA damage foci upon proton irradiation. Furthermore, deficiency in essential NHEJ proteins delayed DNA repair kinetics and sensitized cells to both, X-ray photon and proton irradiation, whereas deficiency in HRR proteins sensitized cells only to proton irradiation. We assume that NHEJ is indispensable for processing DNA DSB independent of the irradiation source, whereas the importance of HRR rises with increasing energy of applied irradiation.


Assuntos
Reparo do DNA por Junção de Extremidades/efeitos da radiação , Prótons , Reparo de DNA por Recombinação/efeitos da radiação , Animais , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Células Clonais , Dano ao DNA , DNA Ligase Dependente de ATP/metabolismo , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Histonas/metabolismo , Humanos , Camundongos , Fótons , Fatores de Tempo , Raios X
9.
Br J Radiol ; 93(1107): 20190494, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31687835

RESUMO

Clinical parameters and empirical evidence are the primary determinants for current treatment planning in radiation oncology. Personalized medicine in radiation oncology is only at the very beginning to take the genetic background of a tumor entity into consideration to define an individual treatment regimen, the total dose or the combination with a specific anticancer agent. Likewise, stratification of patients towards proton radiotherapy is linked to its physical advantageous energy deposition at the tumor site with minimal healthy tissue being co-irradiated distal to the target volume. Hence, the fact that photon and proton irradiation also induce different qualities of DNA damages, which require differential DNA damage repair mechanisms has been completely neglected so far. These subtle differences could be efficiently exploited in a personalized treatment approach and could be integrated into personalized treatment planning. A differential requirement of the two major DNA double-strand break repair pathways, homologous recombination and non-homologous end joining, was recently identified in response to proton and photon irradiation, respectively, and subsequently influence the mode of ionizing radiation-induced cell death and susceptibility of tumor cells with defects in DNA repair machineries to either quality of ionizing radiation.This review focuses on the differential DNA-damage responses and subsequent biological processes induced by photon and proton irradiation in dependence of the genetic background and discusses their impact on the unicellular level and in the tumor microenvironment and their implications for combined treatment modalities.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA/fisiologia , Fótons/uso terapêutico , Medicina de Precisão , Terapia com Prótons , Eficiência Biológica Relativa , Absorção de Radiação , Animais , Morte Celular/efeitos da radiação , Linhagem Celular Tumoral/efeitos da radiação , Terapia Combinada , Reparo do DNA por Junção de Extremidades , Humanos , Transferência Linear de Energia , Neoplasias/genética , Neoplasias/radioterapia , Órgãos em Risco/efeitos da radiação , Tolerância a Radiação/genética , Radiação Ionizante , Microambiente Tumoral
10.
Anal Chem ; 90(22): 13273-13279, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30277755

RESUMO

A growing number of diseases are being linked to protein misfolding and amyloid formation. Recently, p53 was also shown to associate into amyloid aggregates, raising the question of whether cancer development is associated with protein aggregation as well. However, a lack of suitable tools has hampered the evaluation of their clinical relevance. Herein, we report an enzyme-linked-immunosorbent-assay (ELISA) system based on a polyionic, high-molecular-weight ligand that specifically captures aggregated oligomers and amyloid proteins. We proved that naturally occurring tetramers of p53 are not bound, but high-molecular-weight aggregates are bound and subsequently detected. For the first time, this assay allows the quantitative detection of p53 aggregates from cell lysates, which was demonstrated using 22 ovarian-cancer cell lines as well as 7 patient-derived tumor tissues. The levels of p53 aggregates within the missense-mutated tissue samples varied more than 12-fold. This simple, robust method allows studying the abundance and clinical relevance of protein aggregates. This could help our understanding of the role of protein misfolding in cancer or even in predicting therapy responses to aggregation-targeting drugs.


Assuntos
Proteína Supressora de Tumor p53/análise , Amiloide/análise , Amiloide/genética , Linhagem Celular Tumoral , Ensaio de Imunoadsorção Enzimática/métodos , Feminino , Humanos , Mutação , Neoplasias Ovarianas/patologia , Agregados Proteicos/genética , Reprodutibilidade dos Testes , Proteína Supressora de Tumor p53/genética
11.
Int J Part Ther ; 5(1): 133-139, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31773025

RESUMO

DNA repair deficiencies and genome instability are common features and hallmarks of cancer and are ubiquitously found in the full spectrum of malignant diseases. Heritable DNA repair deficiencies, for example, due to BRCA1 and BRCA2 mutations, and subsequent loss of heterozygosity in mammary, ovarian, and prostate carcinoma, are risk factors for the early development of cancer. Despite their detrimental role in tumorigenesis, these deficiencies also provide novel opportunities for treatment options. Current and future pharmacologic approaches in medical oncology rely on the exploitation of such genetically defined, tumor-specific Achilles' heels and integrate the genetic background of a tumor into the treatment strategy. For example, homologous recombination-corrupted, BRCA1/2-mutated tumors are becoming hypersensitive to inhibitors of an additional DNA-damage-repair mechanism and are successfully treated with respective molecular targeting agents such as PARP1 inhibitors. Patient stratification in radiation oncology today is primarily based on clinical parameters and uses highly sophisticated diagnostic imaging for treatment planning on the individual level. Radiation oncology only minimally takes the genetic makeup of tumors into account, and little attention has been given to the fact that the different modalities of ionizing radiation, such as photon and proton irradiation, may also induce differential damages and biological processes, which might again be influenced by the genetic makeup and mutational status of the tumor. However, radiation oncology is nowadays challenged to understand subtle differences induced by the different qualities of ionizing radiation, and to efficiently exploit and to integrate these differential responses in a personalized treatment approach alone and as part of combined treatment modalities with pharmacologic agents. Here we will review recent insights on the differential DNA damage responses to photon and proton irradiation and discuss their implications for combined treatment modalities with chemotherapeutical agents and small molecular targeting compounds.

12.
Artigo em Inglês | MEDLINE | ID: mdl-28679689

RESUMO

High-grade serous ovarian cancer (HGSOC) is characterized by a TP53 mutation rate of up to 96.7% and associated with a more aggressive tumor biology. The origin of HGSOC is thought to arise either from fallopian tube secretory cells or the ovarian surface epithelium/inclusion cysts, the former with more evidence. Peritoneal tumor spread is heterogeneous, either excessive in the peritoneum (with miliary appearance) or more confined to the ovaries with only few (bigger and exophytically growing) peritoneal implants. Using RNA sequencing and DNA digital droplet polymerase chain reaction (PCR), we identified two different functional TP53 mutations in one HGSOC patient: one exclusively in the ovarian tumor mass and the other exclusively in ascites tumor cells, peritoneal tumor masses, and a lymph node metastasis. In blood, both mutations could be detected, the one from the peritoneal tumors with much higher frequency, presumably because of the higher tumor load. We conclude that this mutually exclusive distribution of two different TP53 mutations in different tumor tissues indicates the development of two independent carcinomas in the peritoneal cavity, probably one originating from a precancerous lesion in the fallopian tube and the other from the ovaries. In addition, in the patient's ascites CD45 and EpCAM, double-positive cells were found-proliferating but testing negative for the above-mentioned TP53 mutations. This mutually exclusive distribution of two TP53 mutations is probably further evidence that HGSOC can originate either from the fallopian tube or (more seldom) the ovaries, the former more prone for excessive peritoneal tumor spread.


Assuntos
Neoplasias Ovarianas/genética , Proteína Supressora de Tumor p53/genética , Carcinoma Epitelial do Ovário , Cistadenocarcinoma Seroso , Epitélio/patologia , Neoplasias das Tubas Uterinas/genética , Tubas Uterinas/patologia , Feminino , Genes Neoplásicos/genética , Humanos , Pessoa de Meia-Idade , Mutação , Metástase Neoplásica/genética , Neoplasias Epiteliais e Glandulares/genética , Neoplasias Ovarianas/metabolismo , Ovário/patologia , Neoplasias Peritoneais/genética
13.
Oncotarget ; 7(26): 39640-39653, 2016 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-27172797

RESUMO

High grade serous ovarian cancer (HGSOC) is among the most deadly malignancies in women, frequently involving peritoneal tumor spread. Understanding molecular mechanisms of peritoneal metastasis is essential to develop urgently needed targeted therapies. We described two peritoneal tumor spread types in HGSOC apparent during surgery: miliary (numerous millet-sized implants) and non-miliary (few big, bulky implants). The former one is defined by a more epithelial-like tumor cell characteristic with less immune cell reactivity and with significant worse prognosis, even if corrected for typical clinicopathologic factors.23 HGSOC patients were enrolled in this study. Isolated tumor cells from fresh tumor tissues of ovarian and peritoneal origin and from ascites were used for ribosomal RNA depleted RNA and small RNA sequencing. RT-qPCR was used to validate results and an independent cohort of 32 patients to validate the impact on survival. Large and small RNA sequencing data were integrated and a new gene-miRNA set analysis method was developed.Thousands of new small RNAs (miRNAs and piwi-interacting RNAs) were predicted and a 13 small RNA signature was developed to predict spread type from formalin-fixed paraffin-embedded tissues. Furthermore, integrative analyses of RNA sequencing and small RNA sequencing data revealed a global upregulation of the competing endogenous RNA network in tumor tissues of non-miliary compared to miliary spread, i.e. higher expression of circular RNAs and long non-coding RNAs compared to coding RNAs but unchanged abundance of small RNAs. This global deregulated expression pattern could be co-responsible for the spread characteristic, miliary or non-miliary, in ovarian cancer.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Ovarianas/genética , RNA Interferente Pequeno/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Cistadenocarcinoma Seroso/genética , Feminino , Perfilação da Expressão Gênica , Humanos , MicroRNAs/genética , Pessoa de Meia-Idade , Metástase Neoplásica , Ovário/patologia , Neoplasias Peritoneais/genética , Prognóstico , RNA/genética , RNA Circular , RNA Longo não Codificante , Análise de Sequência de RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...